Doc No: X3J16/92-0093
‘ WG21/N0170
Date: 18-Sep-92
Project: Programming Language C++
Ref Doc: X3J16/92-0055 / WG21/N0132
X3J16/91-012¢4 / WG21/N0057
X3J16/92-0012 / WG21/N0090
Reply to: Laura Yaker
laura_yaker@mentorg.com

Array new and delete Revisited (revised)

Laura Yaker
laura_yaker@mentorg.com
(503) 685-7000 x 2020

ABSTRACT

This paper is a revision to X3J16/92-0044,WG21/N0132 which proposed
a solution to problems related to allocating and deallocating arrays of
objects. This revision incorporates information from discussions of the Exten-
sions Working Group at the Toronto (7/92) meeting. The only functional change
to the proposal was to change the operator names from [Inewand [1delete
tonew([] and delete[].

Overview

This document is divided into the following sections:

1

Background and Rational
This section describes the reasons for the proposal.

Proposal
This section gives an overview of the features of the proposal.

Environmental Impact

This section describes the effect of the proposal on existing C++ code, existing
implementations, ease of use, the syntax of C++, and the text in the draft stan-

dard. (This is the section to look at if you are looking for detailed information.)

Summary
This section summarizes the pros and cons of the proposal.

Appendix - Alternatives
This section describes the alternatives that were considered.

383

Page 2 X3J16/92-0093 - WG21/N0170

1 Background and Rationale
Currently arrays of class objects are allocated / deallocated with global operators new()

and delete() even when class specific forms of operators new() and delete() are
defined. This behavior presents several problems for class and library implementors.

C++ programmers can control the allocation and deallocation class objects by defining
their own member new and delete operators. They are not, however, able to provide
similar control for arrays of class objects. (see papers X3J16/91-0124,WG21/N0057 and
X3J16/920012,WG21/N0090 for more information.)

Some tasks that programmers are prevented from doing with arrays are the following:
e placing them on class-specific heaps

e detecting attempts to delete individual members of an array

e monitoring for heap leaks, including primitive garbage collection

2 Proposal

2.1 Description

This section gives an overview of the proposal. For specific details, see section 3.

Two new operators, operator new(] () and operator delete[]() are proposed for array
allocation and deallocation. Global versions of these operators would be provided in the
standard C++ library. Users would be able to override these versions with their own and

also provide class specific forms of these operators.

L4 global operator new{] ():
void * operator new[] (size_t)

® class operator new(]():
void * X::operator new([] (size_ t)

¢ global operator delete([]():
void operator delete[] (void *)

¢ class operator deletel]():
void X::operator deletel[] (void *)
or '
void X::operator delete[] (void *, size_t)

These operators would be used whenever arrays were allocated and deallocated where
‘currently the global forms of new() and delete() are called.

384

X3J16/92-0093 - WG21/N0170 Page3

Operator new[] () would be able to be overloaded in the same manner as operator
new(). Additional arguments would be passed to operator new(] () via the placement
syntax.

The size_t argument to operator new[] () specifies the total amount of space to be
allocated for the array.

Multi-dimensional arrays are handled in the same fashion as single-dimensional arrays
with respect to calling operator new(]. (In other words, for multi-dimensional arrays the
size argument is still the total space required for the entire array.)

Operator delete(] (), like operator delete(), would not be overloadable. In its class
form, x: :operator delete[] () would be supplied in either (but not both) the one argu-
ment or two argument form.

Like operators new() and delete (), if a programmer defines operator new(] () the pro-
grammer is not required to define a corresponding operator deletel] (). In most cases,
however, programmers will want to define both since memory allocation and dealloca-
tion behaviors are often paired.

The presence of operator new(] () does not change which constructor is called to initial-
ize the elements of the array; they are still initialized with a default constructor.

2.1.1 Rules for selecting operator new(] ()

The global operator new[] () would be used for allocation of arrays of nonclass types
and for arrays of class types if no operator new[] () existed for the class. If operatoz
new[] existed for the class it would be used for allocation of arrays of that class. Global
void * operator new[](size_t) would be supplied in the standard C++ library.

Existing member function lookup rules apply for selecting a class operator new{] ().

Given the following declarations:
class X
{
public:
void * operator new(size_t size):
void * operator new[](size_t size):
}:

class Y
{ /% ... */ };

the following declarations would be handled as follows:
X * xp = new X[10]; // Calls X::operator newl[]
Y * yp = new Y[10]; // Calls global operator new[]
X * xp3 = new X([3][51(7]; // Calls X::operator new[]

385

Page 4

2.1.2
The g
delet
delet
used

woul
Exist:

Give:

delet

2.1.
The
isth

dele
argu
the ¢
The

stan
exist

2.2

For

386

X3J16/92-0093 - WG21/N0170

Rules for selecting operator delete(] ()

»bal operator deletel] () would be called for deallocating arrays via the existing

[1 syntax for arrays of nonclass types and for arrays of class types if no operator
[1 () existed for the class. If operator deletel] existed for the class it would be
r deallocation of arrays of that class. Global void operator delete(] (void *)
be supplied in the standard C++ library.

g member function lookup rules apply for selecting a class operator deletel] ().

the following declarations:

class X

{
public:
void * operator new(size_t size):
void * operator new(] (size_t size);

}s

class Y

{ /% ... %/ };

X * xp = new X[10];
Y * yp = new Y[10];

X * xp3 = new X[3]([51[7]:

g these arrays would be handled as follows:

delete [] =xp: // Calls X::operator delete(]
delete [] yp:; // Calls global operator delete[]
delete [] xp3:; // Calls X::operator delete(]

Requirements on the implementations of cperator new[] () and delete(] ()

ly requirement for programmers writing an implementation of operator new[] ()
it return a pointer to the storage requested. B

ily requirement for programmers writing an implementation of operator

:[1() is that it reclaim the space pointed to by the void * argument. If the single
ent form of operator delete] () is used, the function must be able to determine
e of the space to be deleted. (This is no different than for operator delete().)

plementations of operator new[] () and operator delete(] () provided in the
ird library must call operators new() and delete() respectively in order to leave
.g C++ programs unaffected.

Examples

e examples below, assume that we have a memory management system which has

X3]16/92-0093 -

WG21/N0170 Page5

the following classes and functions available (among others):
// General heap management class

class
{

heap

public:

}:

// Create a new heap
heap () ;

// Get rid of the entire heap
virtual ~heap{():

// Allocate space of size “size” on the heap
virtual void * allocate(size_t size);

// Deallocate the space pointed to by ptr
virtual void deallocate(void * ptr);
//

‘ // Specialized high performance heap with restriction that all
// allocation requests must be for objects of the same size.

class

{

uniheap : public heap

public:

}s

Example 1:

// Create a new uniform heap
uniheap(size_t size);

// Get rid of the entire heap
~uniheap () ;

// Allocate space on the heap. Note: The size argument
// is ignored!
void * allocate(size_t size);

// Deallocate the space pointed to by ptr
void deallocate(void * ptr);

For this example, c1ass x requires that all instances of x be allocated from a specific
pool of memory. It uses the basic heap class for its memory management and makes use
of class operators new and new{] to ensure that all dynamic instances of this class are allo-
cated on the same heap.

387

Page 6 X3J16/92-0093 - WG21/N0170

class X
{
private:
static heap * X_heap: // ptr to class-specific heap
public:
void * operator new(size_t size)
{
if (!X_heap)
// Create the class-specific heap if it doesn’t already exist
X_heap = new heap;
// Allocate the object on the class-specific heap.
return X heap->allocate(size);
}:

void * operator new[] (size_t size)

{
if (!X _heap)
// Create the class-specific heap if it doesn’t already exist

X_heap =-new heap:

// Allocate the array on the class-specific heap.
return X heap->allocate(size);

}:

void operator delete (void * ptr)
{ if (X_heap)
// Free the object
X_heap -> deallocate(ptr);}:

void operator delete(] (void * ptr)
{ if (X_heap)
// Free the array
X_heap -> deallocate(ptr):}:;
}:
heap * X::X heap = NULL;

main ()
{
X * scalar_x = new X; // calls X::operator new()
X * array_x = new X [10]; // calls X::operator new{] (): .

delete scalar_x; // calls X::operator delete():
delete [] array_ x; // calls X::operator delete({]();
}

If one tried to write code to do this same thing today, without operators new[] and
delete([], 0one solution would be to add a form of global operator new that took a heap *
as one of its arguments. This, however, requires that users of the class specify the name
of the class-specific heap when allocating an array of x via new The problem with that
approach is that it relies on the user remembering to put in the heap argument and that
is error prone. In addition, it requires that the user of the class know something specific
about the internal implementation of the class. The class ought to be able to keep the its
heap pointer private to itself.

388

X3J16/92-0093 - WG21/N0170 Page 7

Example 2:

In this example, class special_object has several requirements about how its alloca-
tion and deallocation are handled.

1 It's a frequently used class of which a very large number of objects are allocated.
For performance reasons it needs the fastest, most efficient type of heap that the
memory management system provides.

2 To reduce paging, all objects of type special_object need to be as close to each
other in memory as possible.

3 special_objects have the particular property that after a known point in the pro-
gram they are never referenced again. It is therefore desirable to quickly free the
memory that they are occupying.

The heap management system presented above provides us w1th some features that we
can use for class special_object:

* Objects allocated within the same heap are close to-each other in memory.
* All the memory in a particular heap can be freed quickly with a single call.

* Class uniheap is particularly efficient in terms of space and access time, but it
requires that all objects in the heap be the same size.

Using heaps specific to special_objects will take care of requirements 2 and 3. To meet
requirement 1, it is decided to use class unineap as the type of heap for scalar alloca-
tions of class Special_object in order to get the performance benefits.

A uniheap cannot be used for arrays of class Special_object (because the allocations
could be of varying size) but it is still desirable to use a heap specific to special_objects

so that these special_objects can be freed all at once and quickly once the program is
done with them.

Operators Special object::delete and Special_object::deletel(] will be made pr1-
vate so that objects cannot be freed individually. (This particular class has no secondary
store or any sort of real destruction so there's no need to call its destructor.)

389

Page 8 X3J16/92-0093 - WG21/N0170

class Special object
{
public:
void * operator new(size_t size);
void * operator new(]():

// Pointers to heaps for Special_objects
static heap * Special_object_single_object_heap;
static heap * Special_object_array_ heap:;

Special_object():
~Special_object () {};

private:
// Both delete and delete[] are private to prevent
// users from doing individual deallocations.
void operator delete(void *);
void operator delete[] (void *);

}:

void * Special_ object::operator new(size_t size)_

(.
// use of uniheap requires all allocations to be of same size.
assert(size = sizeof (Special_object)); .

// Create the scalar heap if necessary

if (!Special_object_single object_heap)

Special object_single_object_heap =
new uniheap(sizeof (Special_object));

return Special_ object_single_object_heap->allocate (size);
}

void * Special object::operator new(] (size_t size)
{
// Create the array heap if necessary
if (!Special_ object_array_heap)
Special_object_array heap = new heap(location);

return Special_object_array heap->allocate({size):;
}

390

X3J16/92-0093 - WG21/N0170 Page 9

main ()
{
Special_object * so = new Special_object;
Special _object * so_array = new Special_object[100];

// allocate many more Special objects and arrays of Special objects
/7 ...
// complete use of Special objects

// Free all the Special_ objects we allocated by freeing
// their heaps.
delete Special_object::Special_object_single_object_heap:
delete Special_object::Special_object_array_heap;

}

3 Environmental Impact
3.1 Effect on Existing C++ Code

As long as the standard library versions of global operator new[] () and operator
delete[] () are required to simply call the corresponding scalar versions of operators
new () and delete (), the behavior of existing C++ programs is unchanged.

3.2 Effect on Existing Implementations

Existing compiler implementations would have to be modified to call operators

new(] () and delete(]() (global and class-specific) for array allocations and dealloca-
tions. They would also have to make modifications to the grammar and semantic pro-
cessing to accept declarations and definitions of global and class-specific operators
new(] () anddelete(] ().

Existing library implementations would have to add definitions of global operator
new(] () and operator delete[] ().In order to allow existing programs to remain
unchanged, the implementation for each of these functions is to call the corresponding
scalar version of the operator. o

3.3 Effect on ease of understanding and ease of use

Under the current definition of the language, programmers have to learn that global
operators new() and delete() are called for arrays. This is not obvious to novice pro-
grammers and takes them by surprise. It has been my experience that even experienced

programmers are taken by surprise and require an explanation that justifies what they
see as an anomaly.

If the proposal were adopted, those programmers who had already learned the current
behavior would need to learn the new behavior. Assuming that they had already under-
stood that arrays were allocated differently than scalar objects, the new rules would not

391

Page 10 X3J16/92-0093 - WG21/N0170

be more difficult to understand.

Those novice programmers who are not concerned with writing their own forms of new
and delete would not have to learn the new behavior.

3.4 Grammar Changes

The grammar change required would be the addition of new[] and delete[] to the list of
operators in the non-terminal operator (See X3]J16/92-0060,WG21/N0137 p. 18-8.).

The names new[] and delete[] for the operators do introduce some ambiguities in the

grammar for C++. Because operator names can appear in expressions, there is a syntactic
ambiguity with respect to whether the opening bracket is the beginning of a subscript on
operator new Or part of the operator new(] function name. (The same issues apply for

operator delete[].)

For example:
void * p = operator new{l0]:;

Syntactically this is legal, even though it is semantically incorrect.

The ambiguity can be resolved with lookahead. This is similar to problems that already
exist in the grammar. For example, the same kind of lookahead that can be used to solve
a subset of the ambiguity problems with expression-statements and declarations can the used to
resolve the ambiguity problems with operators new[] and delete(].

3.5 Modifications to the Draft Standard

If this proposal is accepted, modifications to the standard would need to be made in sec-
tions 5.3.3, 5.3.4, 12.5, and the grammar summary. Alternatively, new sections on new(]
and delete(] could be added rather than modifying 5.3.3 and 5.3.4, however, it is prob-
ably easier to understand if descriptions of both the scalar and array forms of new an
delete are kept together. -

The sections below describe the changes and additions that would need to be made
based on the text in document X3J16/92-0060 - WG21/N0137 (June 1992 Draft). Details
about exactly what form the changes should take in the draft are left to the Editor.

3.5.1 New
Information below would be part of section 5.3.3 of the standard. Where information
would need to be added, I have stated the additional information. For those paragraphs

where text would need to be modified I have included both the original and modified
text.

The syntax fragment below is exactly as it is specified in the June 1992 draft in section

392

X3J16/92-0093 - WG21/N0170

5.3.3.
Original:

new-expression:
*iopt DEW-placement,,, new-ty.pe-id ne.w._i'nit-ializerop.
1 pt MeW-placement y,, (type-id)new-mltlahzeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratory,

new-declarator:
* cv-qualifier-seq,p, new-declaratorp,
qualified-class-specifier :: * cv-qualifier-seqp, new-declarator,
. mew-declarator,, [expression]

new-initializer:
(expression-list,)

Page 11

The addition of operator new(] () does not affect this part of the syntax. A form of opez-

ator new(] () is called when the new-declarator is new-declarator,, [expression .
The following information would need to be added to section 5.3.3:

Add to/after paragraph 1:

The lifetime of an object created by operator new{] () is not restricted to the scope in
which it is created. The new{] operator returns a pointer to the initial element (if any) of the array
object. All array dimensions but the first must be constant integral expressions with positive values.
The first array dimension can be a general integral expression even when the type-id is used
(despite the general restriction of array dimensions in type-ids to constant-expressions). The value
of the first array dimension must be non-negative.

Paragraph 2 is unchanged.

Add to/after paragraph 3:

Operator new[] () can be called with the argument zero. In this case a non-null pointer
is returned. Repeated such calls return distinct non-null pointers.

Paragraph 4 is unchanged.

Paragraph 5 states:

The new operator will call the function operator new () to obtain storage (112.5). A
first argument of sizeof (T) is supplied when allocating an object of type T. The new-placement
syntax can be used to supply additional arguments. For example, new T results in a call of oper-

ator new (sizeof(T)) andnew(2,f) Tresultsinacall operator new
(sizeof(t), 2, f£f).

393

Page 12 X3J16/92-0093 - WG21/N0170

Paragraph 5 should be modified to state:

The new operator will call either the function operator new () or the function oper-~
ator new[] () toobain storage (£12.5). When new-declarator,, [expression] (array allo-
cation) is specified the function operator new[] () will be called otherwise, operator new

() iscalled. When operator new() is called, a first argument of sizeo£ (T) is suppiied
when allocating an object of type T. The new-placement syntax can be used to supply additional
arguments. For example, new T results in a call of operator new (sizeof(T)) and
new(2,£) Tresultsinacall of operator new (sizeof(T), 2, £).Whenoperator
new[] () is called, a first argument of sizeof (AT) is supplied where AT is an array of the
specified type and dimensions. The new-placement syntax can be used to supply additional argu-
ments. For example, new T{10] resultsinacall of operator new[] (sizeof(T[10]))
andnew(2,£) T([10] resultsinacall of operator new[] (sizeof(T[10]), 2, £).
(sizeof (T[10]) isequal 0 (sizeof (T) * 10).)!

Add to/after paragraph 6:

The placement syntax can be used only if an operator new[] () with suitable argument
types has been declared.

Paragraph 7 states the following:

‘When an object of a nonclass type (including arrays of class objects) is created with operator
new, the global : :operator new () is used. When an object of class T is created with operator
new, T: :operator new () is used if it exists (using the usual lookupand access rules for find-
ing members of a class and its base classes; 10.1.1, 11.1); otherwise the global : : operator
new () is used. Using : :new ensures that the global : :operator new() is used even if
T: :operator new () exists.

Paragraph 7 should be modified to state:

When an object of a nonclass type, not including arrays of class objects, is created with oper-
ator new, the global : :operator new () is used. When an object of class T is created with
operator new, T: :operator new () is used if it exists (using the usual lookup and access rules
for finding members of a class and its base classes; 10.1.1, 11.1); otherwise the global : : opera~
tor new () isused. Using ::new ensures that the global : : operator new () is used even
if T: :operator new() exists. When an array of objects of class T is created with operator new,
T::operator new([] () isused if it exists (using the usual lookup and access rules for finding
members of a class and its base classes; 10.1.1, 11.1); otherwise the global : :operator
new[] () is used. This applies for both single and multi-dimensional arrays.

Paragraph 8 is unchanged.

Paragraph 9 states the following:

If a class has a constructor an object of that class can be created by new only if suitable argu-
ments are provided or if the class has a default constructor (f12.1). Whether the memory for an

1. Note that it is not, according to the current draft, legal for the compiler to request any additional space for
the array. (See sections 5.3.2 and 5.3.3 on sizeof(array) and the value of the first argument to operator
new().) However, in a survey of 3 currently available C++ systems, 2 of the 3 asked for more space for the
array than (number-of-elements * size-of-an-element).When this was discussed at the Toronto meeting the
consensus was that this was an oversight in the draft and that compilers are allowed to request additional
space for the array. Assuming that the definition or sizeof(array) in 5.3.2 remains the same, then the text
describing the size argument to operator new{] needs to be clarified to explain exactly what the size is.
(Note that this change needs to be made to correctly describe global operator new if this proposal is not
adopted.)

394

X3J16/92-0093 - WG21/N0170 Page 13

object of a class with a constructor is allocated before entering the constructor or by the construc-
tor itself is unspecified. In either case, the memory is allocated by operator new. Access and
ambiguity control are done for both operator new() and the constructor; see £12.

Paragraph 9 should be modified to say:

If a class has a constructor an object of that class can be created by new only if suitable argu-
ments are provided or if the class has a default constructor (f12.1). Whether the memory for an
object of a class with a constructor is allocated before entering the constructor or by the construc-
tor itself is unspecified. In either case, the memory is allocated by operator new or opera-
tor new[]. Access and ambiguity control are done for both operator new() (or
operator new([] ()) and the constructor; see £ 12.

Paragraph 10 states the following:
No initializers can be specified for arrays. Arrays of objects of a class with constructors can
be created by operator new only if the class has a default constructor (£12.1). In that case, the
default constructor will be called for each element of the array.

Paragraph 10 should be modified to say:
' No initializers can be specified for arrays. Arrays of objects of a class with constructors can
be created by operator new[] () only if the class has a default constructor (£12.1). In that
case, the default constructor will be called for each element of the array.

Add to/after paragraph 11:
Any form of operator new(] () may indicate failure to allocate storage by retuming 0
(the null pointer). In this case no initialization is done and the value of the expression is 02

Add to/after paragraph 12:

The order of evaluation of the call to an operator new{] () to get memory and the eval-
uation of arguments to constructors is unspecified. It is also unspecified if the arguments to a con-
structor are evaluated if operator new([] () returns 0.

Paragraphs 13-14 are unchanged.
3.5.2 Delete

The information below would be part of section 5.3.4 of the standard. Where information
would need to be added, I have stated the additional information. For those paragraphs
where text would need to be modified I have included both the original and modified
text.

The following is the grammar fragment from section 5.3.4. It is unchanged by the addi-
tion of operator delete[]().

2.Operator newi{] () should have the same requirements on it as new with respect to returning 0 vs.
throwing an exception and new_handler. In the 6/92 Draft, however, it specifies that new may return zero
and does not mention either new throwing an exception or setting up a new_handler.

395

Page 14 X3J16/92-0093 - WG21/N0170

delete-expression:
t:0pt delete cast-expression
:20pt delete [] cast-expression

When delete-expression evaluates to the ::opt delete [] cast-expression form, an operator
delete[] () is called. The result of the expression still has type void.

Paragraphs 1 through 6 remain unchanged.

Paragraph 7 states:
To free the storage pointed to, the delete operator will call the function operator
delete(); see f12.5. For objects of a nonclass type (including arrays of class objects), the global
: :operator delete () isused. Foran objectofaclass T, T: :operator delete () is
used if it exists (using the usual lookup rules for finding members of a class and its base classes (f
10.1.1); otherwise the global : : operator delete() isused. Using : :delete ensures that
the global ::operator delete() isusedevenif T::operator delete () exists.

Paragraph 7 should be modified to state:

To free the storage pointed to, the delete operator will call the function operator
delete() or operator delete[] (); see £12.5. For objects of a nonclass type, not includ-
ing arrays of class objects, the global : :operator delete () is used. For an object of a class
T, T: :operator delete () is used if it exists (using the usual lookup rules for finding mem-
bers of a class and its base classes; £10.1.1); otherwise the global : : operator delete() is
used. Using : :delete ensures that the global : :operator delete () is used even if
T::operator delete () exists. When an array of objects of class T is destroyed with operator
delete, T: :operator delete[] () isused if it exists (using the usual lookup rules for finding
members of a class and its base classes; £10.1.1), otherwise the global : : operatoxr
delete[] () is used.

Paragraphs 8 and 9 remain unchanged.

Paragraph 10 states:

The default global operator delete reclaims storage allocated by the default global
operator new (only). If other operators new or delete are invoked, it is the responsibility
of the programmer to see that storage is correctly allocated and reclaimed.

Paragraph 10 should be modified to say:

The default global operator delete reclaims storage allocated by the default global
operator new (only) and the default global operator delete [] reclaims storage allocated
by the default global operator new([] (only). If other operators new or delete are invoked,
it is the responsibility of the programmer to see that storage is correctly allocated and reclaimed.

3.5.3 Free Store

Information below would be part of section £12.5 of the standard. Where information
would need to be added, I have stated the additional information. For those paragraphs

where significant text would need to be modified I have included both the original and
modified text.

396

X3J16/92-0093 - WG21/N0170 Page 15

Paragraph 1: Replace “operator new()” with “operator new() Or operator new[] ()”.

Paragraph 2 states:

AnX::operator new() foraclass X isa static member (even if not explicitly
declared static). Its first argument must be of type size_t, an implementation-dependent integral
type defined in the standard header <stdde£ .h>; it must return void *. For example,

class X {
//
void* operator new(size t);
void* operator new(size_t, Arena *);

}i

Paragraph 2 should be modified to state:
X::operator new() and X: :operator new([] () for class X are static members
(even if not explicitly declared static). The first argument of each must be of type size_t, an
implementation-dependent integral type defined in the standard header <stddef .h>; itmust
return void *. For example,
class X {
//
void* operator new(size_t);
void* operatdr new(size t, Arena *);

void* operator new(] (size_t);
void* operator new(] (size_t, Arena *);

Paragraph 3: Change “an operator new()” to “operator new() and operator new[] ()”.

Add to/after Paragraph 4:

AnX: :operator delete[] () foraclass X isastatic member (even if not explic-
itly declared static) and must have its first argument of type void *;a second argument of type
size_t may be added. It cannot return a value; its return type must be void. For example,

class X {

/7

void operator delete[] (void *);
b2

class Y {

1/

void operator deletel[] (void *, size_t):
}:

Add to/after paragraph 5:

Only one operator delete(] () may be declared fora single class; thus operator
delete(] () cannot be overloaded. The global operator delete[] () takesa single argu-
ment of type voidx*,

Add to/after paragraph 6:

If the two argument style is used, operator delete(] () will be called with a second
argument indicating the size of the array object being deleted. The size passed is determined by the

397

Page 16 X3J16/92-0093 - WG21/N0170

destructor (if any) or by the (static) type of the pointer being deleted; that is, it will be correct either
if the type of the pointer argument to the delete operator is the exact type of the object (and not, for
example, just the type of base class) or if the type is that of a base class with a virtual destructor.

Replace paragraph 7 with:
The global and class forms of operator new[] () and operator delete[] are used for
arrays of nonclass and class objects (£5.3.3, £5.4.4).

Paragraph 8 states the following:

Since X: :operator new () and X::operator delete () are static they
cannotbe virtual. A destructor finds the operator delete () to use for freeing store
using the usual scope rules. For example,

struct B {
virtual ~B{():
void* operator new(size_t);
void operator delete(void*);
}i -

struct D : B {
~D();
void* operator new(size_t);
void operator delete(void*);
)i

void £()

{
B* p = new D;
delete p:

}

Here, storage for the object of class D is allocated by D: :operator new () and, thanksto
the virtual destructor, deallocated by D: :operator delete (). Accessto operator
delete () ischecked as if it were virtual. Thus even though a different one may actually be
executed, the statically visible operator delete () must be accessible. In the example
above, if B::operator delete () had been private, the delete expression would have
been illegal.

Replace paragraph 8 with:
Since X: :operator new (), X::operator new[](), X::operator
delete (), andX::operator delete[] () arestatic theycannotbe virtual. A
destructor finds the operator delete () oroperator delete[] () to use for frecing
store using the usual scope rules. For example,

398

X3]J16/92-0093 - WG21/N0170 Page 17

struct B {
virtual ~B{():;
void* operator new(size_t);
void* operator newl[] (size_t);
void operator delete(void¥*):;
void operator delete[] (void*);
}:

struct D : B {
~D();
void* operator new(size_t);
void* operator new(](size_t);
void operator delete(void¥*);
void operator deletel[] (void¥);
}:

void £()
{
B* p = new D;
B* pa = new D(10];
delete p;
delete (] pa;
}

Here, storage for scalar objects of class D is allocated by D: :operator new () and, thanks
to the vinual destructor, deallocated by D: :operator delete (). Similarly, storage for an
array of class D is allocated by D: :operator new[] () and, thanks to the virtual destructor,
deallocated by D: : operatoxr delete(] (). Accessto operator delete () andto
operator delete[] () ischecked asif it were virtual. Thus eventhough a different one
may actually be executed, the statically visible operator delete () and operator
delete[] () must be accessible. In the example above, if B ::operator delete ()
had been private, the delete p expression would have been illegal. If B : :operator
delete[] () hadbeen private,thedelete [] pa expression would have been illegal.

4 Summary

The proposed operators new[] and delete (] provide solutions for real problems in real
programs. They provide a way to control and tracking/monitoring of class object array
allocations and deallocations. The new operators also provide programmers the ability
to disable dynamically allocated arrays by making operator new[] private.

The proposed operators give programmers control of their array allocations and deallo-
cations without exposing implementation-dependent characteristics of the compiler or
run-time library. Programmers do not need to know how compilers manage any over-
head for arrays such as how they keep track of the number of elements in an array.

The “environmental impact” of this proposed extension is not large. Existing programs
would continue to work unchanged. The changes needed in existing compilers and
libraries are straightforward.

The use and behavior of the proposed operators is at least as easy to understand as the

399

Page 18 X3J16/92-0093 - WG21/N0170

current behavior and, may in fact be significantly easier to understand.

5

Appendix - Alternatives

The papers X3]J16/91-0124- WG21/N0057 and X3J16/92-0012 /-WG21/N0090 proposed
two alternative solutions to the problem of array allocation and deallocation. In addition
to those proposals the following alternatives were considered:

400

Status quo

One option is to not change the language at all. In that case, what can programmers
do to cope with problem?

One option is to not use arrays for classes where the allocation and deallocation must
be controlled at the class level, but to instead use another mechanism, such as tem-
plates to create vectors of class objects. If a programmer has control over both the def-
inition of the class and the code that uses the class, the avoidance of arrays can be
handled by programming convention. It is frequently not the case, however, that the
producer of the class can rely on the programming conventions of the consumers. For

that case there needs to be a way to prevent consumers of a class from declaring
arrays of that class.

It is possible to prevent heap-based arrays of a class from being used by making the
default constructor for that class private. Because the default constructor is used to
initialize the array, that prevents a consumer of a class from saying:

class X
{

private:

XO{};

}

X * x = new X[10];

Note that it is still possible for consumers of c1ass x to declare stack-based arrays-by
saying:
X x[10]);

If the language were ever extended so that constructors other than the default con-
structor could be used for initialization of heap-based arrays, this trick of making the
default constructor private would not be sufficient to disable arrays. It is also impor-
tant to note that making the default constructor for a class private, can make use of
the class more awkward because the default constructor cannot be used at all.

Creating a general mechanism to handle arrays (including multi-dimensional arrays
and use of the array[subl][sub2][sub3] syntax) and allows the allocation/dealloca-
tion of arrays to be handled in a class specific manner is somewhat difficult. For

X3J16/92-0093 - WG21/N0170 Page 19

example, in Lippman’s “C++ Primer”3 there is an example of an array template. That
template does not solve the problems that this proposal is intended to address, how-
ever, because it uses arrays in its underlying implementation. The calls to new of those
arrays have the same problems with lack of class specific control as code that uses
built-in arrays directly.

While it appears to be possible to write a separate mechanism that does not use
arrays as its underlying implementation, it is both cumbersome, more difficult to use
and less efficient than built-in arrays. The difficultly in use arises from the fact that
users of the mechanism have to be educated in a new form of arrays that is different
from the one built into the language. The lack of efficiency arises from the layers of
user code that have to be added and at least one additional level of indirection in
each pseudo-array.

* An Operation-disabling mechanism
This alternative arose out of discussions about how to disable arrays. The common
method in C++ for “turning off” an operation on a class is to make the appropriate
function private. For example, if objects of c1ass x should-never be allocated on the
heap, one can make a private x: :operator new(). (Note that a user would still be able
to create an array of x’s on the heap!) For some operations, however, there is not
appropriate function to make private. Consider the case of a class which must only be
allocated on the heap. There is no function to make private that prevents users from
declaring x x; and still allows them to declare x * x = new x.

As noted in the alternative described above, it is possible to prevent the creation of an
array of a class on the heap by making the default constructor for that class private. It
would be cleaner if there were a way to specifically state that arrays were to be dis-
abled (since the connection between the default constructor and arrays is rather tenu-
ous). If there were a general mechanism for disabling operations on a class, that
mechanism could be used to disable arrays.

Unfortunately, this author has not been able to come up with a proposal for solvii;g
this general problem without substantial extensions to the language.

* Additional parameter on new(] -element count
A variation on the proposal presented in this paper would be to supply an additional
argument to operator new(] () that specified the number of elements in the array.
That would make the operator new[] () signature the following:
void * operator new[] (size_t total_size, size_t number of_elements).

3. Lippman, C++ Primer, 2nd ed., Addison-Wesley, 1991, pp.380-388

4. See paper X3J16/91-0124 - WG21/N0057 for an explanation of why the type for the second argument
should be size_t.

401

Page 20 X3J16/92-0093 - WG21/N0170

402

This information was provided to the array form of new proposed in X3J16-91-0124-
WG21/N0057. For particular applications that need to specifically know the number
of elements in the array this form of operator new[] () would provide them with that
information. In the original proposal, however, this information had to be provided
to array operator new because it was the array operator new’s responsibility to keep
track of the number of elements for array operator delete. In the extension proposed
in this paper, the job of keeping track of the number of elements is done by the com-
piler.

The additional information about the number of elements to be allocated originally
sounded like something that would be useful. Members of the Extensions Working
Group, however, have not found an example of how the information would be used
that adequately justifies increasing the complexity of the proposal by adding the
additional argument or that did not depend upon or involve exposing implementa-
tion specific details about arrays.

